
 1

Efficient Dynamic IPv4/IPv6 Lookup Scheme Based on the Most
Specific Prefixes

Y.-K. Chang, D.-C. Lin, Y.-C Lin, and C.-C. Chen

Abstract -- IP lookup schemes in Internet routers can be broadly classified into two categories:
static and dynamic. While static schemes improve lookup speed and reduce memory
requirement by using pre-computations, their drawback is that when prefixes are added or
deleted, the entire data structure may need to be rebuilt and thus very slow. Dynamic schemes
can perform fast prefix insertions and deletions in real time. In this paper, we develop a
dynamic scheme called Most Specific Prefix Tree (MSPT). MSPT is a balanced binary search
tree based on the most specific prefixes in the routing table. The prefixes other than the most
specific ones are allocated to the enclosure sets of some nodes in MSPT. The worst-case time
complexities of MSPT search, insertion, and deletion algorithms are O(logM), O(logM + W),
and O(logM×logW), respectively, where M is the number of nodes in MSPT. However, in
practice, the time complexities of the MSPT search, insertion, and deletion are all O(logM)
because M is very close to the routing table size. Our IPv4/IPv6 experiments show that
MSPT not only performs better than the existing dynamic and static schemes in update speed,
but also better than the existing dynamic schemes in lookup speed.

Keywords：IP address lookup, dynamic routing table, fast update, precomputation

1 Introduction

The Internet traffic growth has been increased in an unprecedented rate recently. The

exponential growth rate of the traffic on the Internet is mostly due to the advent of the World

Wide Web (WWW). Backbone routers with link speed at several 10-gigabits per second

(Gbps), such as OC-192, 10 Gigabits and OC-768, 40 Gigabits, are thus commonly deployed.

To handle gigabit-per-second traffic rates, these backbone routers must be able to forward

millions of packets per second at each port. Moreover, Internet host count also rapidly

increases. The scarcity of IP addresses makes us use the Classless Inter-Domain Routing

(CIDR) [9] scheme. With CIDR, routers aggregate forwarding information by storing address

prefixes that represent a group of addresses reachable through the same interface. Each route

entry (prefix) in the routing table can have an arbitrary length ranging from 1 to 32 bits,

instead of 8, 16, 24 bits in Classful Address scheme. As a result, the IP lookups in routers

become the most critical tasks for packet forwarding. The IP lookups work as follows. When

a router receives a packet, the destination address in the packet’s header is used to lookup the

 2

routing table for finding the best output port to send the packet. There may be more than one

route entries in the routing table that match the destination address. Therefore, it may require

some techniques to determine the best match. Since the longest prefix from all the matched

entries is the best match for a destination address, the IP lookup problem becomes the longest

prefix match (LPM) problem.

To design a good IP address lookup scheme, we need to consider the following key

requirements: lookup speed, memory usage, scalability, and update speed.

 Lookup speed: To handle the increased traffic, the IP address lookup scheme should

quickly decide where to send the packets. This is clearly important for routers not to be the

bottlenecks in the Internet.

 Memory usage: Schemes that are memory-efficient can also lead to good search time

because compact data structures can fit in fast but small cache memory.

 Scalability: Due to the fast growth of Internet traffic and increasing demand for the

IP addresses, it is expected that routing table size is growing and the address prefix length

will significantly increases when switching to IPv6 [6]. Today, IPv6 has been gaining wider

acceptance to replace its predecessor, IPv4, and has early deployed in Europe, Asia, and

North America [14]. Therefore, an IP address lookup scheme must have the capability of

handling large routing tables and longer addresses.

 Update: Route update reflects the changes of the network topology or routing policies.

Currently, the Internet has a peak of hundreds or even thousands of BGP updates per second,

seen in real routers or in the experimental environment [12], [13], [20], [28]. Thus, the

address lookup schemes with fast update time are desirable to avoid routing instabilities.

These updates should interfere little with normal IP address lookups.

Various algorithms for high-performance IP address lookup have been proposed in the

literature. In the survey paper [24], a large variety of routing lookup algorithms are classified

and their complexities of the worst case lookup, update, and memory references are

compared, including a category of algorithms based on trie structure. Based on trie structure,

a set of prefix compression and transformation techniques are used to either make the whole

data structure small enough to fit in a cache, or speedup the tree traversal procedure.

 3

Although the intensive research has been conducted in recent years for IP lookup

problem, schemes that address the balance between lookup speed, memory requirement,

update, and scalability are needed. The static schemes [2], [3], [5], [7], [10], [15], [24], [26],

usually use pre-computations to simplify the data structure of the routing tables and thus

improve the lookup speed and reduce memory requirement. However, pre-computations may

cause the entire data structure to be rebuilt when a single prefix is added or deleted.

Rebuilding the routing tables seriously affects the lookup and update performance of a

backbone router. Thus, the schemes based on pre-computations are not suitable for dynamic

routing tables. On the other hand, the schemes based on the trie data structure like binary trie,

multi-bit trie and Patricia trie [26] do not use pre-computations and thus are good for

dynamic routing tables.

The basic idea of the proposed data structure in this paper is to divide the prefixes in a

routing table into two groups, the most-specific prefixes (MSP’s) and the non most-specific

prefixes (non-MSP’s). The problem of finding the longest prefix match (LPM) becomes how

to organize the MSP’s and non-MSP’s such that searching for the LPM and updating the

routing table are fast. We can use any data structure to organize all MSP's since they are

disjoint. The most challenging problem is how to store non-MPS’s in the balanced tree

constructed from the MSP’s such that we only check a limited number of non-MSP’s for

finding the longest matched prefix when the data structure of MSP’s is traversed. We

demonstrate this idea by using an AVL tree.

We develop a new data structure suitable for dynamic routing tables called Most

Specific Prefix Tree (MSPT). MSPT is an augmented balanced binary search tree (AVL tree).

The basic structure of MSPT is constructed by using the most specific prefixes as keys. The

most specific prefixes are the ones that do not cover any other prefixes in the routing table.

The other prefixes called non-most specific prefixes are put in the enclosure sets associated

with the nodes in MSPT. The proposed search, insertion, and deletion algorithms for MSPT

take O(logM) time for real routing tables, where M is the number of nodes in MSPT. We

conduct performance experiments to compare MSPT with the existing dynamic routing table

schemes such as the prefix binary tree on binary tree (PBOB) [18] and the multiway range

 4

tree (MRT) [31], and several precomputation-based schemes. In terms of search and memory

usage, MSPT performs better than PBOB. In terms of update, MSPT and PBOB perform

equally well. However, when 16-bit segmentation table is used, the update speed for MSPT is

much better than PBOB. As expected, MRT performs the best in terms of lookup speed

because it uses a multiway data structure instead of binary one. The update speed for MRT is

worse than MSPT and PBOB. Moreover, lookup speed and memory requirement for MSPT is

very close to the static schemes.

The rest of the paper is organized as follows. Section 2 describes the existing IP lookup

schemes. Section 3 illustrates the proposed MSPT algorithms and the data structure. The

results of performance comparisons using real routing tables are given in Section 4 and

Section 5 is the conclusion.

2 Related Work

In this section, we review the existing schemes that are close to the designs for dynamic

routing tables. We’ll not discuss the static schemes [24] designed for improving lookup speed

and minimizing the memory consumption nor the ones that need hardware support.

Kim and Sahni [25] developed the first known data structure called a collection of red-

black tree (CRBT) that supports search, insert, and delete operations for dynamic routing

tables in O(log N) time each for a routing table of N entries. In [17], Lu and Sahni employed

the priority search tree (PST) to develop a dynamic routing table data structure with a time

complexity of O(log N) for a search, an insertion or a deletion. The experiment results

showed that PST performs a little worse than CRBT in search time. However, PST performs

much better than CRBT in terms of insert, delete, and memory usage. In [18], Lu and Sahni

developed a data structure called BOB (binary tree on binary tree) for dynamic routing tables.

Based on the BOB, data structures PBOB (prefix BOB) and LMPBOB (longest matching

prefix BOB) are also proposed for highest-priority prefix matching and longest-matching

prefix. With real routing tables, LMPBOB and PBOB complete the longest prefix match

operations in O(W) and O(log N), respectively. Insert and delete operations both take O(log N)

time. Although the theoretical complexities of PBOB and LMPBOB are not better than other

 5

dynamic schemes, the experiment results using real routing tables showed that PBOB and

LMPBOB perform much better than PST in terms of search, insert, delete, and memory usage.

The experiment results measured in [16] showed that all search, insert, and delete operations

for PST are even worse than the binary trie when large routing tables are used. One reason

that PST does not perform well is because it takes time to transform a route prefix to satisfy

the constraints of priority search trees. This transformation complicates the lookup process

and increases the memory requirement of data structure. Also, the memory requirement for

PST may be too high for IPv6.

Besides the binary balanced tree based schemes proposed for dynamic routing tables,

two schemes based on multiway search trees were also proposed in [19] and [31]. Warkhede

and others [31] proposed a B-tree data structure called multiway range tree (MRT). MRT

finds the longest matching prefix in O(log N) time and takes O(mlogm N) time for inserting or

deleting a prefix, where m is the order of the B-tree and N is the number of prefixes in the

routing table. MRT is not only suitable for dynamic routing tables because of its fast lookup

and update speed, but also can be used for solving the range match problem. However, there

are many duplicate endpoints stored in the internal nodes, and a prefix may be stored in at

most m – 1 nodes per B-tree level, where m is the order of the B-tree. This drawback

increases the update time and requires a larger memory. Lu and Sahni [19] proposed another

B-tree data structure called prefix in B-tree (PIBT) for solving this drawback and hence used

memory more efficiently. A crucial difference between PIBT and MRT is that each prefix is

stored in O(1) B-tree nodes per B-tree level in PIBT, while each prefix is stored in O(m)

nodes per level in MRT. The asymptotic complexity to find the longest matching prefix is the

same and the measured time for this operation is also nearly the same for PIBT and MRT.

Both schemes used in prefix routing tables take O(n) memory. However, PIBT is more

memory efficient than MRT by a constant factor.

The multi-bit tries were usually thought of static IP lookup data structures. They also

can be designed to support dynamic updates although their update speeds are usually slower

than the dynamic schemes stated above. Variable stride tries based the controlled prefix

expansion technique and dynamic programming are proposed in [27]. One of the algorithms

 6

proposed in [27] called Expanded Tries, provides fast lookup times as well as fast update

times. The Expanded trie scheme can also be tuned to trade increased memory for reduced

search times. The tree bitmap scheme [8] which is based on the 4-bit fixed stride trie can also

provide faster search and update speeds.

Other than the dynamic schemes, one alternative to solving update problem is to

maintain two routing tables, one active and the other rebuilt for a given number of updates

and then hot-swap between them. Although the hot-swap schemes retain the faster query

times, they perform updates off-line and thus incur the following three drawbacks. (1) The

route information stored in routing tables reflects the topology of the network. Route update

messages are generated when the network topology changes due to changes in connectivity or

routing policies. Packets are not routed on an optimal path until the routing table is updated.

Thus, longer update latency can result in a transient increase in packet round-trip times and

packet loss. (2) If the route update algorithm in a router cannot keep up with the updates, a

condition known as route flap may be triggered. When a route flap takes place, a router

processing a backlog of route updates is incorrectly marked as being unreachable by other

routers. This state change creates a domino effect of route updates that can cripple a network.

(3) If the routing table is unavailable due to an update, incoming packets must either be

buffered or dropped. Dropping TCP packets may trigger the TCP congestion avoidance

mechanism, thereby reduce the steady state throughput and the overall network performance.

3 The Most Specific Prefix Tree

In this section, we introduce a new data structure called Most Specific Prefix Tree (MSPT)

that is suitable for dynamic routing tables. We first outline the idea of MSPT and provide

notations and definitions to make our presentation clear.

A W-bit range, R, is denoted as [L, U] such that 0 ≤ L, U ≤ 2W–1 and L ≤ U, where W is

number of bits in the address space of the range. A W-bit prefix P is denoted as p/len in the

length format or denoted as p/netmask in the mask format, where p is a W-bit number, len is

the prefix length, and netmask is a W-bit bitmap. P can also be treated as a range [L, U] such

that L = p – p%2W–len and U = L + 2W–len – 1, where % is the integer modulus operator. A

 7

prefix of length W – len can also be represented in the ternary format as bW−1…blen∗…∗,

where bj = 0 or 1 for W – 1 ≥ j ≥ len and ∗ is the “don’t care” bit. For simplicity, a single

don’t care bit is used to denote a series of don’t care bits. Thus, the prefix 1∗ denotes 1∗∗∗∗

in a 5-bit address space. For example, 192.168.10.0/24 is a prefix in its length format which

can also be represented in the mask format as 192.168.10.0/255.255.255.0 or in the ternary

format as 11000000 10101000 00001010∗.

Let R1 = [L1, U1] and R2 = [L2, U2] be two ranges. R1 and R2 are said to be disjoint if

none of them is covered by the other, i.e., U1 < L2 or U2 < L1. R1 is said to be smaller than R2

(denoted as R1 < R2) if U1 < L2. We use ‘<>’ as the disjoint operator. Thus, R1 <> R2 means

R1 and R2 are disjoint. R1 and R2 are nested (or enclosed) if and only if the address space

covered by one range is a subset of that covered by the other, denoted as R2 ⊇ R1 or R2 ⊆ R1,

where ‘⊇’ or ‘⊆’ is called the nest or enclosure operator. R1 and R2 are intersecting if and

only if R1 and R2 are partially overlapped, i.e., either L1 < L2 ≤ U1 < U2 or L2 < L1 ≤ U2 < U1.

The longest common ancestor of two prefixes A and B denoted as LCA(A, B) is the

longest prefix that covers both prefixes. Given two prefixes, A = aW−1…ai* and B =
bW−1…bj*, LCA(A, B) = cW − 1…cm+1∗ where ck = ak = bk for k = m+1 to W–1 if ak = bk and ck =

* for k = 0 to m if am ≠ bm (i.e., m is the most significant bit position such that am ≠ bm). It is

easy to show that for three disjoint prefixes A < B < C, LCA(A, C) also encloses B.

A prefix is called the most specific prefix if it does not enclose any other prefixes in the

routing table. Otherwise, it is called the non-most specific prefix. Most Specific Prefix Tree

(MSPT) is a balanced binary search tree constructed by using the most specific prefixes in the

routing table as the keys. The prefix key of a node x is denoted as x.prefix. The non-most

specific prefixes are placed in the enclosure sets (Eset) of nodes in MSPT by following the

MSPT enclosure constraint defined below.

MSPT Enclosure Constraint: Each non-most specific prefix p is placed in the enclosure set

of a node x (denoted as x.Eset) if p encloses x.prefix, and p does not enclose the prefix of

any ancestor of node x in MSPT.

Notice that the MSPT enclosure constraint is similar to the range allocation rule in [18].

The data structure for the enclosure set of a node in MSPT has a very important impact on the

YKChang
螢光標示

 8

performance of finding the LPM. Each enclosure set contains at most W – 1 enclosure

prefixes. The most trivial structure is a linear array denoted as Enclosure Set Linear Array

(ESLA) that pre-allocates W slots for storing all the possible enclosure prefixes. Thus, search

and update operations can be done in a constant time. However, ESLA is not good in terms of

memory requirement. On the other hand, the enclosure set can be implemented as a balanced

search tree denoted as Enclosure Set Balanced Tree (ESBT) which uses the prefix lengths as

keys. ESBT is good in terms of memory. However, in the worst case, the search and update

operations take O(log W) time. To further speed up the search speed, an additional W-bit

bitmap can be used to record the prefix lengths in enclosure sets. Figure 1 shows an MSPT

example. The most specific prefixes include P2, P4, P5, P6, P7, and P9. The balanced search

trees for the non-empty enclosure sets are also shown in Figure 1.

MSPT has the following useful properties. (1) For two nodes x and y in MSPT, x.prefix

and y.prefix are disjoint. (2) Let node y be one of the descendants of node x in MSPT and let

Px and Py be any enclosure prefix in x.Eset and y.Eset, respectively. (2a) Py is disjoint from

x.prefix. (2b) Either Px and Py are disjoint or Px encloses Py. (3) For two nodes x and y in

MSPT, if none of them is the ancestor of the other, any enclosure prefix in x.Eset is disjoint

from y.prefix and any enclosure prefix in y.Eset.

Property (1) is obvious by the definition of MSPT. Let node y be one of its descendants

of a node x and P be any prefix in y.Eset. If P covers x.prefix, it should have been put in

x.Eset. Thus, P is disjoint from x.prefix and Property (2a) is true. For example, in Figure 1, P1,

Figure 1. A most specific prefix tree (MSPT) example.

Eset

P9

P4

P5

P3

P8

P10

P1 P11
P6P2P7

P12

Name P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

Prefix

0
*

0
1
0
1
*

1
0
0
*

1
0
0
1
*

1
0
1
1
1

1
1
*

0
0
0
1
*

0
1
*

0
0
1
1
1

0
0
1
*

0
0
1
1
*

1
0
1
*

MSP √ √ √ √ √ √

Eset

Eset

Eset

YKCHANG
螢光標示

YKCHANG
螢光標示

YKCHANG
螢光標示

YKCHANG
螢光標示

 9

P10, and P11 in P9.Eset are disjoint from P4. Let node y be one of the descendants of a node x

in MSPT and EPx and EPy be any enclosure prefix in x.Eset and y.Eset, respectively.

Obviously, it is possible that EPx and EPy are disjoint. We prove EPx must enclose EPy by

contradiction. Assume EPy encloses EPx. This assumption results in that EPy also encloses

x.prefix. By the definition of MSPT, EPy should have been put in x.Eset. Therefore, if EPx

and EPy are not disjoint, then EPx must enclose EPy and thus Property (2b) is true. For

example, in Figure 1, P1 in P9.Eset encloses P8 in P2.Eset. For two nodes x and y in MSPT,

we assume none of them is the ancestor of the other. Let Px be any enclosure prefix in x.Eset,

and Py be y.prefix or any enclosure prefix in y.Eset. Also, let node z be the lowest common

ancestor of nodes x and y in MSPT. Thus, we have x.prefix < z < y.prefix or y.prefix < z <

x.prefix. Assume Px covers Py. Prefix Px must also cover y.prefix. Since Px covers both

x.prefix and Py, Px must also cover z.prefix. As a result, Px should have been put in z.Eset.

This is a contradiction. Therefore, Px and Py are disjoint and Property (3) is true. For example,

in Figure 1, P1, P10, and P11 in P9.Eset are disjoint from P5.prefix and P12 in P5.Eset.

3.1 Finding the Longest Prefix Match

The longest prefix that matches the destination address d may be found along a path from the

root toward a leaf node in a top-down manner. When a node is traversed, we check if the

associated prefix key matches d. Note that all prefix keys of the nodes in MSPT are disjoint.

If a prefix key that encloses d is found, it must be the longest prefix match (LPM) for d and

the search completes. Otherwise, the enclosure sets associated with the nodes traversed are

checked from the leaf to the root in a bottom-up manner. If there are more than one prefixes

that enclose d in a node’s enclosure set, the longest one is the LPM for d and the search stops.

If no LPM is found after the root is reached, the default port is returned as the LPM.

Figure 2 shows the algorithm MSPT_Search(d, root) that finds the LPM for address d.

In MSPT_Search(), the first while loop looks for a node whose prefix encloses d. In addition,

the pointers to the traversed nodes with non-empty Eset are recorded in array node[]. In the

second for loop, we search the enclosure sets recoded in array node[] in a bottom-up manner.

As long as we find the LPM in an enclosure set, the search process completes. If no match is

 10

found in the second loop, the default port is returned. To speed up the search in an enclosure

set, we can use a 32-bit bitmap to record the lengths of the prefixes in the enclosure set

(denoted as node[i].bitmap). The set ith bit in the bitmap indicates that there is an enclosure

prefix of length i in the enclosure set. When we said the most (least) significant set bit in a

32-bit bitmap is k, we mean all the bits from 31 to k + 1 (from 0 to k – 1) are 0 and the bit k is

1. We also assume that finding the most (or the least) significant set bit in a 32-bit bitmap can

be computed by a single CPU instruction (e.g., BSF instruction and FFS instruction

supported in Intel Pentium processor and IXP 24xx network processor, respectively), similar

to the other bit manipulation instructions such as AND, OR, and XOR. If the least significant

set bit of the bitmap is k, all other enclosure prefixes in the enclosure set must be longer than

k. Also, if any enclosure prefix P in node[i].Eset covers d, the prefix length of P must be

shorter than or equal to LCA(d, node[i].prefix) because P also covers node[i].prefix. If k is

shorter or equal to LCA(d, node[i].prefix), node[i].Eset must contain an enclosure prefix that

covers d. As a result, finding the longest prefix in a node’s enclosure set takes a constant time

by using the bitmap because only a constant number of instructions are needed. Therefore,

the complexity of function MSPT_Search() is O(log M), where M is the number of nodes in

MSPT. Note that M is the number of the most specific prefixes and thus is less than the total

number of prefixes in the routing table. As we will show in the routing table analysis that M

is about 91-93% of N for the routing tables we tested.

Figure 2. Algorithm to find longest prefix match.

Algorithm MSPT_Search(d, root) // d is the destination address
{
01 x = root; s = 0;
02 while (x ≠ NULL) {
03 if (x.prefix ⊇ d) return x.port;
04 else
05 if (x.Eset ≠ NULL) {s = s + 1; node[s]= x; }
06 if (d < x) x = x.LeftChild;
07 else x = x.RightChild;
08 }
09 for (i = s; i >= 1; i – –) {
10 Find the longest prefix EP in node[i].Eset such that EP encloses d;
11 if (EP ≠ NULL) return EP.port;
12 }
13 return default_port;
}

YKChang
螢光標示

 11

Proof of correctness of the algorithm MSPT_Search().

Let node[i] for i = 1 to s be the nodes traversed when searching MSPT with destination

address d, where node[1] is the root of MSPT. Figure 3 shows an example for s = 5. Node

node[s] may have a child denoted as node[x] which is not traversed as shown in Figure 3. To

prove the correctness of the algorithm MSPT_Search(), we have to consider three cases. Case

1 - if a most specific prefix that matches d is found in the first while loop, it must be the

longest matching prefix in the routing table. Case 2 - if a prefix in node[i].Eset that matches d

is first found in the second for loop, it must be the longest match prefix in the routing table

and thus no other enclosure set in MSPT needs to be checked. Case 3 - node[x].prefix and

prefixes in node[x].Eset do not need to be checked. Case 4 – no enclosure set other than the

ones traversed needs to be checked.

In the first case, the first while loop examines node[i] from i = 1 to s in a top-down

manner. If node[i].prefix covers d, it must be the LPM because all the prefixes in nodes are

the most specific and disjoint. In the second case, all prefixes node[i].prefix for 1 ≤ i ≤ s do

not cover d. We check node[i].Eset from i = s to 1 in a bottom-up manner. If we find the

longest prefix match of d in node[i].Eset, we don’t need to check the enclosure sets

node[k].Eset for k = i – 1 to 1 because of Property (2b).

Since node x is not traversed when searching MSPT with destination address d, we must

have either d < node[s].prefix < node[x].prefix or node[x].prefix < node[s].prefix < d. From

Property (2a), we know that node[x].prefix and any enclosure prefix in node[x].Eset are

EP3

Figure 3. An MSPT example, where EP3 ∈ node[3].Eset and EP3
encloses both d and node[3].prefix.

node[x]d

root node[1]

node[2]

node[3]

node[4]
node[s]

node[x]

node[s]node[3] node[4] node[2] node[1]

 12

disjoint from node[s].prefix and thus they must also disjoint from d. Therefore,

node[x].prefix and node[x].Eset don’t need to be checked and the case 3 is true. From

Property (2a) and Property (3), we know all the prefixes in the enclosure sets other than the

ones traversed are disjoint from the prefixes traversed. As a result, case 4 is true.

Consider the example in Figure 3 and the address d that does not match any most

specific prefix. Therefore, the second for loop must be executed. Assume node[3].prefix < d

< node[s].prefix and there exists an enclosure prefix EP3 in node[3].Eset that covers d.

Assume node[2] also contains an enclosure prefix EP2 in its enclosure set that covers d. Since

both EP2 and EP3 cover d, EP2 must enclose EP3 because of the MSPT constraint. Thus, EP2

cannot be the LPM of d. Assume node[x] contains an enclosure prefix EPx that covers d.

Since d < node[s].prefix < node[x].prefix, EPx must enclose node[s].prefix and thus the MSPT

enclosure constraint is violated. Therefore, node[x].Eset does not need to be checked. In

summary, starting from node[s] to node[1], if the enclosure set of the first node traversed

contains an enclosure prefix EP that covers address d, EP must be the LPM of d.

3.2 Insertion

A prefix P is inserted by performing a binary search tree traversal from root to a leaf

node or to a node with only one child. Similar to function MSPT_Search, the pointers to the

nodes traversed are recorded in array node[]. If we find a node x whose prefix key (x.prefix)

encloses P, then x.prefix is put in x.Eset and x.prefix is replaced with P. Otherwise, if x.prefix

is enclosed by P, then P is put in x.Eset directly. However, if P is disjoint from x.prefix, then

the same process repeats on x’s left child if P is smaller than x.prefix or on x’s right child

otherwise. Finally, when all the prefixes associated with the nodes traversed are disjoint from

P, a new node associated with P is created and inserted in MSPT as the child of the last

traversed node. It is possible that MSPT becomes unbalanced after a new node is inserted.

We use the pointers stored in array node[] in a bottom-up manner to check if any sub-tree

rooted at node[i] is unbalanced. If so, the tree balancing operation at node[i] is performed.

Figure 4 shows the MSPT insertion algorithm MSPT_insert(P, root). In the while loop,

we find a node x such that P encloses x.prefix or P is enclosed by x.prefix. If such a node x

 13

exists, we insert P into x.Eset if P encloses x.prefix or insert x.prefix into x.Eset and replace

x.prefix with P if prefix P is enclosed by x.prefix. We use array node[] to store the pointers

pointing to the nodes traversed in the while loop. Notice that the time complexity of putting a

prefix in a node’s enclosure set is O(log W) when using ESBT or O(1) when using ESLA.

The codes following the while loop must be executed when P is disjoint from all the

prefix keys in MSPT. P is inserted as the child of the last traversed node. Finally, the tree

balancing operation (function BST_Balancing()) must be performed because MSPT may not

be balanced after a new node is inserted. The balancing operation searches the unbalanced

node by following the pointers in array node[] in a bottom-up manner. As we know that if the

balanced search tree is implemented with AVL tree, the tree balancing needs at most one

rotation for insertion. However, a tree rotation may result in the violation of MSPT enclosure

constraint. We will discuss the rotation and tree balancing problems in section 3.4 and show

that a rotation requires O(log W) time when using ESBT or O(W) time when using ESLA.

As a result, the time complexity for insertion is O(log M + log W) when using ESBT or

O(log M + W) when using ESLA, where M is the number of nodes in MSPT.

3.3 Deletion

Algorithm MSPT_insert(P, root)
{
01 x = root; s = 0;
02 while (x ≠ NULL) {
03 s = s + 1;
04 node[s]= x;
05 if (P = x.prefix) return;
06 if (P ⊆ x.prefix) { // x.prefix encloses prefix P
07 x.Eset = x.Eset + {x.prefix};
08 x.prefix = P; return; }
09 if (x.prefix ⊆ P) { // prefix P encloses x.prefix
10 x.Eset = x.Eset + {P}; return; }
11 if (P > x.prefix) x = x.RightChild;
12 else x = x.LeftChild;
13 }
14 new_node = Create_A_Node(P); // create a new node and insert it in MSPT
15 if (P > node[s].prefix) node[s].RightChild = new_node;
16 else node[s].LeftChild = new_node;
17 BST_Balancing(node, s); // Perform balancing operation in a bottom-up manner
}

Figure 4. Algorithm to insert a prefix.

 14

Similar to the other existing dynamic schemes, deleting a prefix is always more

complicated than lookup or inserting a prefix. Therefore, we break down the deletion

procedure into three cases. Case 1 - Delete an enclosure prefix in the enclosure set of a node.

Case 2 - Delete the prefix key of a leaf node or a node with only one child. Case 3 - Delete

the prefix key of a node with two children. Figure 5 shows the algorithm MSPT_delete.

Case 1 is trivial. We only need to remove the prefix from the enclosure set. No node in

MSPT is really deleted. Thus, tree rotation and enclosure set adjustment are not needed.

In case 2, the following sub-cases are considered. Assume the prefix to be deleted is in

node x. (1) If x is a leaf and x.Eset is empty, then node x is deleted from MSPT and tree

rotation may be needed by calling BST_Balancing(). (2) If x is a leaf and x.Eset is not empty,

then the longest prefix is removed from x.Eset and replaces x.prefix. Tree rotation is not

needed because the MSPT properties described earlier are still satisfied. (3) If node x has a

child node y, x.Eset is not empty, and the longest prefix (EP) in x.Eset does not enclose

y.prefix, then prefix EP is removed from x.Eset and replaces x.prefix. Tree rotation is also not

needed. (4) If node x has a child node y and x.Eset is empty or all the prefixes in x.Eset

enclose y.prefix, then x.prefix is replaced with y.prefix and the prefixes in y.Eset is added in

x.Eset. Finally, the leaf node y is freed and the tree balancing is performed by using

BST_Balancing(). Figure 6 shows the detailed algorithm for this case. Excluding the time

Algorithm MSPT_delete(P, root)
{
01 x = root; s = 0;
02 while (x ≠ NULL) {
03 if (P = x.prefix){
04 if (x is a leaf node or x has only one child) // Case 2
05 Delete_leaf_prefix_node(x, node, s);
06 else Delete_internal_prefix_node(x, node, s); // Case 3
07 return;
08 }
09 if (x.prefix ⊆ P) { x.Eset = x.Eset – {P}; return;} // Case 1
10 if (P ⊆ x.prefix) return; // This case is not possible
11 s = s + 1; node[s] = x;
12 if (P > x.prefix) x = x.RightChild;
13 else x = x.LeftChild;
14 }
}

Figure 5. Algorithm to delete a prefix.

YKCHANG
螢光標示

YKCHANG
螢光標示

YKCHANG
螢光標示

YKCHANG
螢光標示

YKCHANG
螢光標示

 15

taken for procedure BST_Balancing(), the time complexity for the tasks done in algorithm

Delete_leaf_prefix_node() is O(log W) for ESBT or O(W) for ESLA. We shall discuss the

procedure BST_Balancing() in subsection 3.4.

Now consider case 3 for deleting the prefix that is equal to the prefix key of an internal

node P with two children. It is the most complicated case for deletion because three issues

described below must be considered after the prefix is removed from MSPT. The first issue is

how to select a node such that the prefix key of the selected node can replace P. The second

issue is how to adjust the enclosure sets in order to not violate the MSPT enclosure constraint.

The third issue is how to rebalance MSPT if a node is really deleted from MSPT, which is the

procedure BST_Balancing() described later. In order to clearly describe the proposed

algorithm, the third case of deleting the prefix in node x is further decomposed into two sub-

cases: when x.Eset is empty or not. The time complexity in the third case is O(logM +

logM×logW) for ESBT or O(logM + W) for ESLA, where M is the number of nodes in MSPT.

(1) x.Eset is empty.

Figure 6. Algorithm to delete a leaf node or a node with only one child.

Algorithm Delete_leaf_prefix_node(x, node, s)
{
01 if (x is a leaf node){
02 if (x.Eset ≠ NULL){
03 EP = the longest prefix in x.Eset;
04 x.prefix = EP; x.Eset = x.Eset – {EP};
05 } else { free_node(x); BST_balancing(node, s); }
06 } else { // node x has only one child
07 y = the only child of x;
08 if (x.Eset = NULL) {
09 x.prefix = y.prefix; x.Eset = y.Eset;
10 free_node(y); BST_balancing(node, s);
11 } else {
12 EP = the longest prefix in x.Eset; // ‘<>’ is the disjoint operator
13 if (EP <> y.prefix) { x.prefix = EP; x.Eset = x.Eset – {EP};
14 } else {
15 x.prefix = y.prefix; x.Eset = x.Eset ∪ y.Eset;
16 free_node(y); BST_balancing(node, s); }
17 }
18 }
}

 16

We need to determine how to select a node to replace node x and find the enclosure set

of the replacing node. Tree balancing will be described later in subsection 3.4.

(a) Selecting a node to replace node x:

The traditional method to delete an internal node x with two children in the binary

search tree is to select a node to replace x and then delete the selected node. The selected

node is the one with the smallest (or largest) key among all the keys that are larger (or smaller)

than x. In a balanced binary search tree, the selected node must be a leaf node or a node

having only one child. After the replacement, the deletion problem becomes deleting a leaf

node or a node with only one child. This is the second case for deletion solved earlier.

Assume the two nodes that can be selected to replace node x are the node y and the node z as

shown in Figure 7. Selecting a node to replace x improperly may result in tree rotations in all

the levels of the balanced tree from the selected node to the root. We use AVL tree as the

example to illustrate our idea to achieve the goal of reducing the number of required rotations.

Assume each node maintains a balance factor (bf) defined as the height of node’s left subtree

minus that of the node’s right subtree. Therefore, based on the definition of AVL tree, bf can

only be – 1, 0, or + 1.

Consider if node x is replaced by y. The heights of the subtrees rooted at node Ri (1 ≤ i ≤

s) may remain the same or be reduced by one when node y is deleted. We say that the height

reduction (denoted by HR) of the subtree rooted at Ri is 0 or 1 after node y is deleted. Two

factors that determine if a rotation is needed for node Ri are the balance factor of Ri (Ri.bf)

and the height reduction of the Ri’s left subtree (Ri.leftHR). When a rotation is needed for Ri

and what is the height reduction of subtree rooted as Ri will be analyzed as follows.

We know that Ri.leftHR could be 0 or 1. If Ri.leftHR = 0, no rotation is needed for Ri

because the balance condition of Ri is unchanged. It is easy to see that no rotation is needed

for Rk (1 ≤ k < i) too. Now we consider when Ri.leftHR = 1. If Ri.bf is 1 before y is deleted,

Ri.bf becomes 0 and the height reduction of Ri is 1 after y is deleted. Since Ri.bf = 0, no

rotation is needed for Ri. If Ri.bf is 0 before y is deleted, Ri.bf becomes –1 and the height

reduction of Ri is 0 after y is deleted. As a result, no rotation is needed for Ri. If Ri.bf is –1

 17

before y is deleted, Ri.bf becomes –2 after y is deleted and thus a rotation is needed for Ri.

After rotation, Ri.bf becomes 0 and the height reduction of Ri is 1.

Based on the above analysis, the best choice is to select y to replace x when the balance

factor of Rs–1 (y’s parent) is 0. The other best choice is to select node z to replace x when the

balance factor of Lt–1 (z’s parent) is 0. We can break the tie between y and z arbitrarily. In

general, we compute the total number of rotations needed when y or z deleted. The

computation process is done from Rs–1 to R1 and from Lt–1 to L1 in a bottom-up manner. The

process can be performed in O(logM) time. We select the node y to replace x if deleting y

generates less rotations than deleting node z. Otherwise we select z to replace x.

 (b) Adjust the enclosure set of the replacing node:

Assume the replacing node is y and thus x.prefix is replaced with y.prefix. This step

looks for the prefixes that enclose y.prefix in the enclosure sets of nodes Ri for i = s to 1. Let

EPi be an enclosure prefix in Ri.Eset that encloses y.prefix for i = 1 to s. The possible length

of EPi must meet the following restrictions. (1) Since EPi encloses both y.prefix and Ri.prefix,

we must have length(EPi) ≤ length(LCA(y.prefix, Ri.prefix)). (2) Since x.prefix is not enclosed

by EPi, we must have length(EPi) > length(LCA(x.prefix, Ri.prefix)). (3) Since Rj is in the left

subtree of Ri for j > i, we must have Rj.prefix < Ri.prefix and also length(EPj) > length(EPi).

These three restrictions narrow down the lengths of enclosure prefixes that cover y.prefix

when this step is executed from the Rs up to R1. Therefore, if the enclosure sets are organized

as linear arrays, we can find the enclosure set of y.prefix from Rs to R1 and move them to

Figure 7. Node x is to be replaced. Nodes y and z are the smallest in x’s right subtree
and the largest in x’s left subtree, respectively. Node y (or z) may have a
child node labeled as u (or v).

x

R1

R2

Rs–1

Rs y

u

Lt–1

L1

L2

z Lt

v

 18

node x with the worst case time complexity of O(W). However, if the enclosure sets are

implemented as balanced binary search trees, the worst case time complexity of this step

becomes O(logM×logW).

Optimizations. Two optimizations can be used to reduce or avoid the overhead in

adjusting the enclosure set of the replacing node and the tree balancing operation. The first

optimization that was proposed in [18] does not really free the node x that is supposed to be

freed. The node x is marked as invalid and x.prefix is only used for the search operation.

Some leaf nodes or nodes with one child are deleted when the number of nodes in MSPT is

double of the number of the most specific prefixes in the routing table. Based on this

optimization, the enclosure set adjustments and the tree balancing operations can be avoided

completely. It may be possible that an invalid node can be selected to store a newly inserted

prefix. However, since the newly inserted prefixes are normally inserted as the leaf nodes, the

invalid leaf nodes have a better chance to be used as the placeholders for the newly inserted

prefixes than the invalid internal node. We use the following example to describe the second

optimization. If node x in Figure 7 is an invalid node and the newly inserted prefix happens to

be inserted as the left child of node y, then the second optimization replaces x.prefix with

y.prefix, performs the enclosure set adjustments for y.prefix, and put the newly inserted prefix

in node y. As a result, the tree balancing operations are avoided completely. Notice that the

tree balancing operations are more time-consuming than the enclosure set adjustments.

(2) x.Eset is not empty.

Let EPx be the longest prefix in x.Eset. Four cases are considered as follows.

Rotation

(a)

Figure 8. Rotation example where the prefixes are defined in Figure 1.

Newly Inserted

a
P9

P2

P1, P10, P11

a.Eset

P4

b

c a
P9

P2

P4

b

c

P1
b.Eset

a.Eset
P10,P11

a
P9

P2

P4

b

c

P1, P10, P11

a.Eset

Eset
Adjustment

(b) (c)

 19

Case 1: EPx is disjoint from both y.prefix and z.prefix (y.prefix <> EPx and z.prefix <> EPx).

Obviously, EPx is disjoint from all the most specific prefixes in MSPT. Thus, we

remove EPx from x.Eset and replace x.prefix with EPx.

Case 2: EPx encloses y.prefix and, EPx and z.prefix are disjoint (y.prefix ⊆ EPx and z.prefix

<> EPx). Assume Ri.Eset contains an enclosure prefix EPi where 1 ≤ i ≤ s – 1. Based

on the MSPT properties, x.prefix and EPi must be disjoint. If EPi encloses y, EPx

must also enclose EPi. Therefore, if such prefix EPi exists, EPi has to be moved to

node along with y.Eset. In other words, the step (b) of adjusting the enclosure set of

the replacing node is not needed. As a result, the following steps are performed: (1)

x.prefix is replaced with y.prefix. (2) y.Eset is appended to x.Eset. (3) Node y is

removed. (4) The enclosure set of y.prefix is adjusted.

Case 3: EPx encloses z.prefix and EPx and y.prefix are disjoint (y.prefix <> EPx and z.prefix ⊆

EPx). We replace x.prefix with z.prefix and other operations are similar to case 2.

Case 4: EPx encloses both y.prefix and z.prefix (y.prefix ⊆ EPx and z.prefix ⊆ EPx). It is

similar to case 2 or 3. We can either perform the same steps in case 2 or in case 3.

The one that needs fewer rotations is better.

One remaining task in cases 2, 3, and 4 is the tree balancing after a node is freed. As a

result, the time complexity for deletion is O(logW×logM) when using ESBT or O(W×logM)

when using ESLA, where M is the number of nodes in MSPT. The same optimizations for the

sub-case where x.Eset is empty can also be used here. We will not show the algorithm

Delete_internal_prefix_node(x, node, s) in details because of the space limit.

3.4 Rotation and Tree Balancing

When inserting/deleting a node into/from the balanced MSPT, one or more rotations

may be needed to rebalance MSPT. Those rotations may result in a violation of enclosure

constraint and the search operation may fail. Based on the MSPT properties, all non-most

specific prefixes allocated to the left subtree of a node x in MSPT must be disjoint from

x.prefix and smaller than x.prefix. Similarly, the prefixes allocated to the right subtree of node

x in MSPT must be disjoint from x.prefix and larger than x.prefix. For example, Figure 8(a)

 20

shows that a new node c associated with prefix P4 is inserted as the right child of node b.

After balancing MSPT as shown in Figure 8(b), the enclosure constraint is violated because

P1 also encloses P2. Figure 8(c) shows the correct MSPT after adjusting the enclosure sets.

Balanced binary search tree can be implemented by a Red-Black tree or an AVL tree.

Figure 9(a) shows the LL rotation used to balance the balanced binary search tree following

an insert or a delete operation. Figure 9(b) shows the LR rotation if the AVL tree is used. RR

and RL rotations are not shown because they are similar to the LL and LR rotations. We may

respectively view the LR and RL rotations as a RR rotation followed by an LL rotation and

an LL rotation followed by an RR rotation.

In Figure 9(a), we observe that the relative positions of nodes a and b change after

performing an LL or RR rotation. Node a becomes the child of node b. To avoid violating the

MSPT enclosure constraint, we have to find a set S, such that after performing a rebalancing

rotation, b.Eset = b.Eset∪S and a.Eset = a.Eset – S, where S = { p | p ∈ a.Eset and p encloses

b.prefix }. The time required to perform an LL and RR rotation depends on how to determine

the set S, remove S from a.Eset, and then insert S into b.Eset. The time taken for an LR or RL

rotation is roughly twice as long as that for an LL or RR rotation.

To find the set S, we can just find the prefix pMax with the longest prefix length that

encloses b.prefix in the a.Eset. As a matter of fact, pMax encloses both a.prefix and b.prefix

and thus pMax must be shorter than or equal to LCA(a.prefix, b.prefix). If the data structure

for the enclosure set is a linear array (ESLA), set S can be easily determined to be the

prefixes that are shorter than or equal to LCA(a.prefix, b.prefix). Thus, the complexity of

performing a rotation is O(W). Moreover, if the data structure for the enclosure set is a

balanced binary search tree of an ordered set of prefix lengths (ESBT), the prefix pMax can

be found in O(height(a.Eset)) time by following a path from the root to a leaf node. If pMax

exists, we can use the split [11] operation to extract the prefixes that belong to S from a.Eset.

We first separate a.Eset into a balanced binary tree TSmall in which all prefixes are shorter

than pMax and a balanced binary tree TBig in which all prefixes are not longer than pMax.

Then we use the join [11] operation to combine the tree TSmall, prefix pMax, and the tree

b.Eset into a single balanced binary tree. Finally, we have a.Eset = TBig, and b.Eset =

 21

join(TSmall, pMax, b.Eset) after performing a rebalancing rotation. Although, the split and

join operations of [11] need to be modified slightly, this modification does not affect the

complexity. So, the complexity of performing an LL or RR (LR or RL rotation) rotation in

the enclosure set is O(log W).

Tree Balancing. Tree balancing operation is performed in a bottom-up manner after a

node is really freed. No matter which balanced binary search tree (AVL or Red-Black tree) is

used, rotation may be required for every node traversed from node Rs–1 up to R1 or from Lt–1

up to L1 (see Figure 7). Theoretically, there are O(log M) nodes that need rotations. Based on

the rotation result stated above, the tree balancing requires O(W × logM) time for ESLA

O(logW × logM) time for ESBT.

3.5 Analysis

As stated in previous sections, the most time-consuming operation in MSPT is the tree

rotation which involves moving the non-most specific prefixes between nodes. The number

of the non-most specific prefixes [21] and their locations in MSPT are two very important

factors that will influence the performance of MSPT. Therefore, we analyze the six BGP

a

b LL a

b

(a) LL rotation

bl

RR LL

(b) LR rotation

Figure 9. LL and LR rotations.

LR

br

ar

br

bl

ar

c

cl cr bl ar

b a

a

c

b

ar

cl cr

bl

b

a

c

ar

cl

cr

bl

 22

routing tables we use in the paper, and show the detailed statistics in Table 1. These tables are

obtained from [1], [22], and [23].

In Table 1, we observe that about 91% ~ 93% prefixes in a routing table are the most

specific prefixes. Almost 91% ~ 93% enclosure sets are empty. The average size of all

enclosure sets is very small (0.08 to 0.09). Excluding the empty enclosure sets, the average

size of nonempty enclosure sets is also small (1.07 to 1.10) and the maximum size of

nonempty enclosure sets is 4 or 5. Therefore, the performance overhead of tree rotations that

redistribute the prefixes of the enclosure sets in MSPT will not be significant.

As described earlier, we have used a balanced tree to store the prefixes in each

enclosure set. However, the balanced tree is only suitable for a large number of keys instead

of a few keys. Therefore, better performance can be obtained by using a simple linear list to

store each enclosure set. The linear list is in ascending order of prefix length. As explained

before, a 32-it bitmap that only records the prefix lengths of the prefixes in the enclosure set

can speed up the match decision.

Based on the above analysis for the average sizes of enclosure sets (0.08 to 0.09) and

non-empty enclosure sets (1.07 to 1.10), it is reasonable to assume that the number of

prefixes in any enclosure set is a constant instead of O(W). Also, since most of the enclosure

sets are empty as shown in Table 1, no time is needed for searching enclosure prefix when

adjusting the enclosure set. Thus a tree rotation can be done in a constant time and tree

balancing can be done in O(log M) time. Therefore, in practice, the MSPT takes O(log M)

time to perform a search, an insertion, or a deletion.

4 Performance Evaluations

Routing tables
(year-month)

AS6447a
(2000-4)

AS6447b
(2002-4)

AS2493
(2005-4)

Amsterdam
(2006-5)

London
(2006-5)

Frankfurt
(2006-5)

of prefixes 79,535 124,803 157,027 187,444 188,979 191,810
of the most specific prefixes 73,900 114,745 143,684 171,494 172,938 175,549

of the non-most specific prefixes 5,635 10,058 13,343 15,950 16,041 16,261
of empty enclosure sets 68,639 105,561 131,520 156,979 158,314 160,753

of nonempty enclosure sets 5,261 9,184 12,164 14,515 14,624 14,796
Max. size of nonempty enclosure sets 4 5 4 5 5 5
Avg. size of nonempty enclosure sets 1.07 1.10 1.10 1.10 1.10 1.10

Table 1. Data structure analysis for MSPT.

 23

In this section, we first present the performance results for IPv4 routing tables. The six

BGP tables [1], [22], [23] analyzed in previous section are used in the experiments. In

addition to the proposed MSPT algorithm, we also experiment on five existing dynamic

schemes, the dynamic segment tree [4], the prefix binary tree on the binary tree structure

(PBOB) [18], the multiway range tree (MRT) [31], the prefix in B-tree (PIBT) [19], and the

tree bitmap scheme [8]. In the experiments, both MRT and PIBT use 32-way B-tree data

structures. The dynamic schemes with names prefixed with "OLDP-" (for example, OLDP-

PBOB) are based on the one-level dynamic partitioning (OLDP) method proposed in [16].

OLDP method is a variant of the 16-bit segmentation table. Moreover, our performance

results also include the static schemes such as binary search on prefix lengths (BLS) [29], the

small forwarding table (Lulea) [7], a compressed table structure (Pisa) [5], and binary range

search (BRS-16) [15] enhanced with a 16-bit segmentation table.

All tested schemes are implemented in C. GNU gcc-3.3.5 compiler enabled with

optimization level O4 is used. The experiments are conducted on a Debian GNU/Linux 3.1

platform with a Pentium 4 2.4GHz processor containing 8KB L1, 512KB L2 caches and

512MB main memory.

Total Memory Requirement. Table 2 shows the amount of memory consumed by

each of the tested schemes. Figure 10 shows the same results in bar chart form. The pre-

computation-based schemes except Pisa scheme have the smaller memory requirement.

Except Tree-Bitmap scheme, MSPT or OLPD-MSPT has a better performance than all

dynamic schemes. Compared with PBOB, MSPT uses about 30% less memory than PBOB.

This result can be attributed to the small number of nodes and the small number of non-empty

enclosure sets in MSPT. Moreover, in PBOB, less than 1 % of the range sets (similar to the

enclosure sets in MSPT) are empty. Therefore, additional memory is needed to store those

nonempty range sets. On the contrary, almost all enclosure sets in MSPT are empty. Hence,

MSPT always requires less memory space than PBOP. DST needs more memory than MSPT

and PBOB because some prefixes are duplicated in DST. As for PIBT and MRT, they both

need larger memory space because their node size is large and not all the pointers and keys in

the nodes are used.

 24

Search Time. To measure the lookup times, we need the simulated IP traffic which is

obtained as follows. We first use an array A to store the address parts of all prefixes in a

routing table and then increment them by one. A random permutation of A is generated and

this permutation determines the search order. The time required to determine all the longest

prefix matches is measured and averaged over the number of addresses in A. The experiment

is repeated 100 times, and the mean value of these average times is computed. These mean

times are reported in Table 3 and in Figure 11.

First, only consider the dynamic schemes. The MRT and PIBT perform the best among

all schemes because they have lower tree heights than MSPT, DST, PBOP, and Tree Bitmap.

Table 2. The statistics of memory requirement (in KB) for IPv4.
Routing tables AS6447a AS6447b AS2493 Amsterdam London Frankfurt

Dynamic Schemes
MSPT 1,433 2,237 2,809 3,684 3,714 3,771
DST 3,010 4,120 5,008 5,820 5,880 5,990

PBOB 2,122 3,299 4,129 4,940 4,980 5,055
MRT 3,665 5,689 7,099 8,542 8,591 8,754
PIBT 3,596 5,636 7,017 8,452 8,536 8,661

Tree bitmap 1,323 2,000 2,443 2,867 2,894 2,935
OLDP-MSPT 1,828 2,533 3,027 3,855 3,882 3,933
OLDP-DST 3,441 4,468 5,341 6,190 6,235 6,316

OLDP-PBOB 2,465 3,550 4,298 5,213 5,253 5,323
Static Schemes

BRS-16 1,474 1,972 2,308 2,511 2,527 2,558
BLS 1,459 2,315 3,292 3,817 3,940 4,102
Lulea 521 802 895 1,026 1,036 1,046
Pisa 2,089 2,749 4,703 10,125 10,165 10,170

Figure 10. Total memory requirement (in KB) for IPv4.

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

11,000

AS6447a AS6447b AS2493 Amsterdam London Frankfurt

Routing Tables

M
em

or
y

U
sa

ge
 (

K
B

)

MSPT

DST

PBOB

MRT

PIBT

Tree bitmap

OLDP-MSPT

OLDP-DST

OLDP-PBOB

BRS-16

BLS

Lulea

Pisa

 25

PIBT performs a little better than MRT. The lookup time for MSPT is about 90% of PBOB.

This is because each node in MSPT represents a prefix in a routing table and almost all

enclosure sets in MSPT are empty. For PBOB, however, the key in a node represents a

singleton address. All prefixes in a routing table must be stored in all the range sets of PBOB.

As a result, less than 1% range sets are empty. Therefore, the overhead in MSPT to check

whether there exist other prefixes also matching the destination address is much less than that

of checking the range sets in PBOB. Thus, the MSPT indeed has the better search

performance than PBOB. Moreover, MSPT performs a little worse than Tree Bitmap.

Routing tables AS6447a AS6447b AS2493 Amsterdam London Frankfurt
Dynamic Schemes

MSPT 0.58 0.72 0.80 0.60 0.58 0.58
DST 0.67 0.78 0.83 0.63 0.63 0.64

PBOB 0.97 1.17 1.28 0.98 1.00 0.98
MRT 0.46 0.53 0.56 0.44 0.45 0.44
PIBT 0.39 0.45 0.48 0.39 0.38 0.38

Tree bitmap 0.57 0.62 0.60 0.54 0.53 0.53
OLDP-MSPT 0.25 0.32 0.34 0.26 0.26 0.27
OLDP-DST 0.28 0.35 0.36 0.28 0.27 0.28

OLDP-PBOB 0.41 0.46 0.48 0.36 0.37 0.36
Static Schemes

BRS-16 0.25 0.33 0.36 0.35 0.36 0.36
BLS 0.26 0.38 0.44 0.41 0.41 0.43
Lulea 0.22 0.24 0.25 0.24 0.25 0.25
Pisa 0.04 0.04 0.04 0.04 0.04 0.04

Figure 11. Search time (in Microsecond) for IPv4.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

AS6447a AS6447b AS2493 Amsterdam London Frankfurt

Routing Tables

S
ea

rc
h

T
im

e
(μ

se
c)

MSPT

DST

PBOB

MRT

PIBT

Tree bitmap

OLDP-MSPT

OLDP-DST

OLDP-PBOB

BRS-16

BLS

Lulea

Pisa

Table 3. The statistics of search time (in Microsecond) for IPv4.

 26

However, all the three schemes with OLDP perform much better than Tree Bitmap and

OLDP-MSPT performs the best among them.

After adopting OLDP, the number of prefixes in each segment is much smaller than the

number of prefixes in original prefix database. The small amount of prefixes in each segment

reduces the difference of search performance among all OLDP schemes and also improves

the update performance of all the schemes. Therefore, the search performance of OLDP-

MSPT is even better than BRS-16 and BLS when the router table sizes are larger than

120,000 prefixes. Also, OLDP-MSPT is a little worse than Lulea and much worse than Pisa.

Update Time. For tables Amsterdam, London, and Frankfurt, we use the update traces

available in [23]. The statistics of these traces are shown in Table 4. Since the other three

tables (AS6447a, AS6447b, and AS2493) have no corresponding BGP insertion and deletion

traces, we start by randomly selecting 2000 prefixes from the routing tables. The remaining

prefixes are used to build the initial MSPT. After MSPT is constructed, the selected 2000

prefixes are inserted in a random order. Once the 2000 insertions are done, the selected 2000

prefixes are removed from MSPT, also in a random order. The total elapsed time of inserting

2000 prefixes and removing 2000 prefixes is divided by 4000 to get the average update time.

This experiment is repeated 100 times and the mean of the average update times is computed.

For static schemes, inserting or deleting a prefix may affects entire data structure. For

BRS-16, the update times are obtained by calculating the time of maintaining the 16-bit

segmentation table plus the rebuilding time of the corresponding data structure to that

segment. As for BLS, the time of creating all makers when inserting a prefix and the time of

finding the LPM of all makers are counted. For Lulea, we calculate the time of rebuilding the

entire data structure.

Table 5 and Figure 12 show the average update times we measured. The bar charts in

Figure 12 do not show the performances of static schemes because their update speeds are too

Traces Amsterdam London Frankfurt
Period 2006/5/1, 0:00~00:20 2006/5/5, 16:00~16:05 2006/5/6, 08:10~08:15

of insertion 11,966 15,028 13,780
of deletion 1,252 672 981
Total updates 13,218 15,700 14,761

Table 4. The statistics of update traces.

 27

slow compared with the dynamic schemes. The update performance of dynamic schemes is

much better than that of static schemes. DST and MSPT have almost the same update

performance, and their performances are the best among all schemes. But, when using OLDP,

OLDP-MSPT has better performance than OLDP-DST and OLDP-PBOB. MRT and PIBT

perform worse than, MSPT, DST, and PBOB because the insertions or deletions involving

rotations in the B-tree structure are slow.

In addition to the average performance, we also show the worst case performance for

table AS2493 in terms of 99th percentiles of all measured search and update times in Table 6.

The worst case results for other tables are not shown because they have similar trends as table

AS2493. We can see that OLDP-MSPT is the best among all the dynamic schemes.

Routing tables AS6447a AS6447b AS2493 Amsterdam London Frankfurt
Dynamic Schemes

MSPT 0.79 0.81 0.80 1.18 1.21 1.20
DST 0.81 0.82 0.81 1.21 1.24 1.22

PBOB 0.86 0.87 0.86 1.24 1.27 1.26
MRT 1.31 1.34 1.30 1.70 1.75 1.72
PIBT 1.51 1.52 1.52 1.91 1.95 1.93

Tree bitmap 1.68 1.69 1.69 1.94 2.02 1.96
OLDP-MSPT 0.55 0.56 0.55 0.78 0.82 0.78
OLDP-DST 0.60 0.62 0.60 0.82 0.88 0.85

OLDP-PBOB 0.62 0.64 0.64 0.88 0.92 0.88
Static Schemes

BRS-16 9.66 9.81 9.96 12.00 13.56 14.20
BLS 133 210 254 287 302 321
Lulea 1,455 1,634 1,885 1,998 2,012 2,088

Figure 12. Update time (in Microsecond) for IPv4.

Table 5. The statistics of update time (in Microsecond) for IPv4.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

AS6447a AS6447b AS2493 Amsterdam London Frankfurt

Routing Tables

U
pd

at
e

T
im

e
(μ

se
c)

MSPT

DST

PBOB

MRT

PIBT

Tree bitmap

OLDP-MSPT

OLDP-DST

OLDP-PBOB

 28

Integrated Performance Analysis. Since different lookup schemes have their merits in

terms of search speed, update speed, or memory consumption, we propose a simple

performance model by considering all these three factors together. We analyze the maximum

number of lookups (Ns) that a lookup scheme can sustain in one second when there are Nu

update messages to be processed in the same one-second period. Nu can be up to a few

hundreds to a few thousands in the real routing environment [12], [13], [20], [28]. By

assuming that the search and update operations take Ts and Tu microseconds, respectively, we

have Ts×Ns + Tu×Nu = 1,000,000. To simplify our analysis, we assume Nu = α×Ns. Thus, we

have Ns = 1,000,000 / (Ts+ α×Tu). To include the memory consumption in the analysis, we

treat the maximum number of sustained lookups and the memory size as the performance and

cost of a lookup scheme. Thus, we use the performance-cost ratio (Ns/Mem) as the metric to

compare all the schemes.

 Table 7 and Figures 13 and 14 show the comparison results for AS2493 table. Other

tables of different sizes show similar results which are not given in this paper. The ideal

scheme is assumed to have the best search and update speeds we measured among all the

experimented schemes and have the same size of memory as the linear list of routing entries

in length format (i.e., 32-bit address/5-bit length/8-bit port). Therefore, the ideal scheme has

the performance of Ts = 0.04 μs and Tu = 0.55 μs, and needs 863 KB of memory. The

parameter α is set as 0.05 to 0.001. For the ideal case, it amounts to the update rate of 12k ~

632k updates per second. Because the performance results of the ideal case are much better

Schemes search update
MSPT 1.05 1.13
DST 1.07 1.21

PBOB 1.42 1.24
MRT 0.70 1.82
PIBT 0.65 2.02

Tree bitmap 0.77 2.04
OLDP-MSPT 0.51 0.82
OLDP-DST 0.54 0.84

OLDP-PBOB 0.62 0.84
BRS-16 0.53 13

BLS 0.68 257
Lulea 0.47 1890

Table 6. The worse case performance (in Microsecond) for AS2493.

 29

than the existing schemes, they are truncated at 3,500,000 and 1,500 in Figure 13 and 14,

respectively.

 OLDP-MSPT performs best among all the dynamic schemes in terms of the maximum

number of sustained lookups and the performance-cost ratio. As expected, OLDP-MSPT

becomes worse than BRS-16 when α becomes smaller (α < 0.01). However, BRS-16 and all

the static schemes enhanced with 16-bit segmentation tables are not suitable for IPv6.

Although BRS can be used for IPv6, it does not support dynamic updates because BRS uses

a linear array structure.

IPv6 performance. To measure the performance for IPv6, we need IPv6 routing tables.

Since at present, IPv6 is not as popular as IPv4, current IPv6 table sizes are small and

unlikely to reflect future IPv6 network growth. In our experiments, we use two small real

IPv6 routing tables (V6table-1 and V6table-2) obtained from IPv6 backbone routers [1]. In

addition, we use two large IPv6 routing tables (GV6table-1 and GV6table-2) that are

generated based on the generation model proposed in [30].

Although many IPv4 schemes adopt 16-bit segmentation table to speed up the lookup

speeds, but for IPv6, the 16-bit segmentation table is no longer suitable because the addresses

of IPv6 are 128 bits long. Therefore, we only experiment the dynamic schemes such as

 Ns Performance-Cost ratio
α 0.05 0.01 0.005 0.001 0.05 0.01 0.005 0.001

Ideal 12,500,000 20,833,333 22,727,273 24,509,804 14,484 24,141 26,335 28,401
MSPT 1,190,476 1,237,624 1,243,781 1,248,751 424 441 443 445
DST 1,148,765 1,193,175 1,198,969 1,203,645 229 238 239 240

PBOB 755,858 776,036 778,634 780,725 183 188 189 189
MRT 1,600,000 1,745,201 1,765,225 1,781,578 225 246 249 251
PIBT 1,798,561 2,019,386 2,050,861 2,076,757 256 288 292 296

Tree bitmap 1,460,920 1,621,008 1,643,520 1,661,985 598 664 673 680
OLDP-MSPT 2,721,088 2,894,356 2,917,578 2,936,426 899 956 964 970
OLDP-DST 2,564,103 2,732,240 2,754,821 2,773,156 480 512 516 519

OLDP-PBOB 1,953,125 2,055,921 2,069,536 2,080,559 454 478 482 484
BRS-16 1,165,501 2,175,805 2,440,215 2,702,995 505 943 1,057 1,171

BLS 76,104 335,570 584,795 1,440,922 23 102 178 438
Lulea 10,582 52,356 103,359 468,384 12 58 115 523

Table 7: Integrated performance comparisons in terms of the maximum number of sustained
lookups and the performance-cost ratio for AS2493 table.

 30

MSPT, DST, PBOP and Tree Bitmap. Since all the IPv6 routing tables contain the prefixes of

lengths less or equal to 64, the implementation of IPv6 schemes is straightforward by using

two 32-bit integers for storing 64-bit keys or prefixes of no more than 64 bits.

Table 8 and Figure 15 show the performance results for all the tested schemes. As

expected, Tree Bitmap that is a variant of 4-bit multibit trie performs the worst in search and

update speeds because Tree Bitmap grows linearly with the prefix length and thus it does not

scale well to longer IP addresses. MSPT consumes much less memory than PBOB for larger

tables because, similar to reasons in the IPv4 cases, the number of nodes in MSPT is less than

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

3,500,000

0.05 0.01 0.005 0.001

α

M
ax

im
um

 #
 o

f
lo

ok
up

s
Idea l

MSPT

DST

PBOB

MRT

PIBT

Tree bitmap

OLDP-MSPT

OLDP-DST

OLDP-PBOB

BRS-16

BLS

Lulea

Figure 13. sdafsdfasf
0

250

500

750

1,000

1,250

1,500

0.05 0.01 0.005 0.001

α

P
er

fo
rm

an
ce

 c
os

t r
at

io

Ideal

MSPT

DST

PBOB

MRT

PIBT

Tree bitmap

OLDP-MSPT

OLDP-DST

OLDP-PBOB

BRS-16

BLS

Lulea

Figure 13. Maximum numbers of sustained lookups.

Figure 14. The performance-cost ratios.

≈ ≈ ≈ ≈

≈ ≈ ≈ ≈

 31

that in PBOB and most of the enclosure sets in MSPT are empty. MSPT also performs better

than PBOB and DST in search and update speeds. The difference of search performance

between MSPT and DST or PBOB increases as routing table size increases. However, the

difference of update performance among MSPT, DST, and PBOB is not significant.

5 Conclusions
We have developed a new data structure called Most Specific Prefix Tree (MSPT) that is

suitable for dynamic routing tables. MSPT is an augmented balanced binary search tree

which is constructed by the most specific prefixes in the routing table. The remaining non-

IPv6 routing tables V6table-1 V6table-2 GV6table-1 GV6table-2
of prefixes 274 593 9,788 20,070

MSPT 9.9 18.3 312.0 605.0
DST 15.2 30.2 420.5 840.7

PBOB 12.5 24.1 386.5 763.1
Memory

in KB
Tree bitmap 10.2 15.9 396.0 798.0

MSPT 0.25 0.32 0.42 0.53
DST 0.25 0.33 0.46 0.56

PBOB 0.26 0.36 0.52 0.75
Search
in μs

Tree bitmap 0.47 0.62 0.73 0.81
MSPT 0.56 0.63 0.67 0.73
DST 0.56 0.66 0.70 0.76

PBOB 0.59 0.66 0.72 0.79
Update
in μs

Tree bitmap 1.58 1.63 1.67 1.73

Table 8.The performance results for IPv6.

Update Time (μsec)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

V6table-1 V6table-2 GV6table-1 GV6table-2

Routing Tables

Memory Usage (KB)

0

100

200

300

400

500

600

700

800

900

V6table-1 V6table-2 GV6table-1 GV6table-2

Routing Tables

MSPT DST PBOB Tree bitmap

Search Time (μsec)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

V6table-1 V6table-2 GV6table-1 GV6table-2

Routing Tables

Figure 15. Performance comparisons for IPv6 tables.

 32

most specific prefixes are placed in the enclosure sets associated with the nodes in MSPT.

The proposed search, insertion, and deletion algorithms for MSPT can be finished in O(log M)

time for real routing tables, where M is the number of nodes in MSPT. From our experiment

results, M is about 91-93% of the number of prefixes in the routing table.

Comparing with the existing dynamic schemes and several static schemes, our

experiments showed that MSPT is superior to all the dynamic schemes in terms of search and

update speeds. Our integrated performance analysis shows that MSPT or OLDP-MSPT

performs better than all the experimented schemes if the update rate is high. Moreover,

MSPT also scales well to IPv6.

References

[1] BGP Routing Table Analysis Reports, http://bgp.potaroo.net/.

[2] A. Buchsbaum, G. Fowler, B. Krishnamurthy, K. Vo, and J. Wang, “Fast prefix

matching of bounded strings,” ACM Journal of Experimental Algorithmics, vol. 8, 2003.

[3] Y. Chang, “Fast binary and multiway prefix searches for packet forwarding,”

COMPUTER NETWORKS, vol. 51, no. 3, pp. 588-605, February 2007.

[4] Y. Chang and Y. Lin, “Dynamic segment trees for ranges and prefixes,” IEEE

Transactions on Computers, vol. 56, no. 6, pp. 769-784, June 2007.

[5] P. Crescenzi, L. Dardini, and R. Grossi, “IP address lookup made fast and simple,” 7th

Annual European Symposium on Algorithms, LNCS, vol.1643, pp.65-76, 1999.

[6] S. Deering and R. Hinden, “Internet protocol, version 6 (IPv6) specification,” RFC2460,

December 1998.

[7] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, “Small forwarding tables for fast

routing lookups,” ACM SIGCOMM, pp. 3-14, September 1997.

[8] W. Eatherton, Z. Dittia, and G. Varghese, “Tree bitmap: hardware/software IP lookups

with incremental updates,” ACM Computer Communications Review, vol. 34, no. 2, pp.

97-122, April 2004.

 33

[9] V. Fuller, T. Li, J. Yu and K. Varadhan, “Classless inter-domain routing (CIDR): an

address assignment and aggregation strategy,” RFC1519, September 1993.

[10] P. Gupta, S. Lin, and N. McKeown, “Routing lookups in hardware at memory access

speeds,” IEEE INFOCOM, pp. 1240-1247, April 1998.

[11] E. Horowitz, S. Sahni, and D. Mehta, Fundamentals of Data Structure in C++. New

York: W.H. Freeman, 1995.

[12] M. Ichiriu, “High performance layer 3 forwarding - the need for dedicated hardware

solutions,” White Paper, NetLogic Microsystems, 2000.

[13] Intel, “IXP2400 Intel Network Processor IPv6 Forwarding Benchmark Full Disclosure

Report for Gigabit Ethernet”, June 16, 2003.

[14] IPv6 Forum, http://www.ipv6forum.com.

[15] B. Lampson, V. Srinivasan and G. Varghese, “IP lookups using multiway and

multicolumn Search,” IEEE/ACM Transactions on Networking, vol. 3, no. 3, pp. 324-

334, June1999.

[16] H. Lu, K. Kim, and S. Sahni, “Prefix and interval-partitioned dynamic IP router-tables,”

IEEE Transactions on Computers, vol. 54, no. 5, pp. 545-557, May 2005.

[17] H. Lu, and S. Sahni, “O(logn) dynamic router-tables for prefixes and ranges,” IEEE

Transactions on Computers, vol. 53, no. 10, pp. 1217-1230, October 2004.

[18] H. Lu and S. Sahni, “Enhanced interval tree for dynamic IP router-tables,” IEEE

Transactions on Computers, vol. 53, no. 12, pp. 1615-1628, December 2004.

[19] H. Lu and S. Sahni, “A B-tree dynamic router-table design,” IEEE Transactions on

Computers, vol. 54, no. 7, pp. 813-824, July 2005.

[20] Y. Luo, L. Bhuyan, and X. Chen, “Shared memory multiprocessor architectures for

software IP routers,” IEEE Transactions on Parallel and Distributed System, vol. 14, no.

12, pp. 1240-1249, December 2003.

[21] X. Meng, Z. Xu, B. Zhang, G. Huston, S. Lu, and L. Zhang, “IPv4 address allocation

and the BGP routing table evolution,” ACM SIGCOMM, pp. 71-80, January 2005.

 34

[22] D. Meyer, University of Oregon Route Views Archive Project, June 2004

(http://archive.routeviews.org/).

[23] RIPE NCC Project at RIPE Coordination Centre: http://www.ripe.net.

[24] M. Ruiz-Sanchez, E. Biersack, and W. Dabbous, “Survey and taxonomy of IP address

lookup algorithms,” IEEE Network Magazine, vol. 15, no. 2, pp. 8-23, March/April 2001.

[25] S. Sahni and K Kim, “An O(logn) dynamic router-table design,” IEEE Transactions on

Computers, Vol. 53, no. 3, pp. 351-363, March 2004.

[26] K. Sklower, “A Tree-based packet routing table for Berkeley Unix,” Winter Usenix

Conference, pp. 93-99, 1991.

[27] V. Srinivasan and G. Varghese "Fast Address Lookup Using Controlled Prefix

Expansion," ACM Transactions on Computer Systems, Vol. 17, No. 1, pp. 1–40,

February 1999.

[28] D. Taylor, J. Turner, W. Lockwood, T. Sproull, and D. Parlour, “Scalable IP lookup for

internet routers,” IEEE Journal on Selected Areas in Communications, vol. 21, no. 4,

pp.522-534, May 2003.

[29] M. Waldvogel, G. Varghese, J. Turner and B. Plattner, “Scalable high-speed prefix

matching,” ACM Transactions on Computer Systems, vol. 19, no. 4, pp. 440-482,

November 2001.

[30] M. Wang, S. Deering, T. Hain, and L. Dunn, “Non-random generator for IPv6 tables,”

12th IEEE Symp. of High Performance Interconnects, pp. 35-40, August 2004.

[31] P. Warkhede, S. Suri, and G. Varghese, “Multiway range trees: scalable IP lookup with

fast updates,” Computer Networks, vol. 44, no. 3, pp. 289--303, February 2004.

